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ABSTRACT. Uttrasonic velocity measurements in solids and 1iquids using standing-wave technigques camnot

be accurateTy analyzed without the use of an appropriate transducer correction formula.
An improved transducer correction is derived which is substantially more

transducer {transmission) case.

¥He discuss the two-

accurate than all previous approximations over the range of parameters corresponding to velocity determinations

in both solids and liquids.

Previous approximations are useful only over very limited ranges.
relationship between the present result and a previously derived result for the one-transducer case.

We discuss the
Camputer

simuiations of velocity measurements demonstrate the accuracy of our formula under a wide variety of conditions.

1. Introduction

Standing wave wltrasonic measurements can be
performed in either the reflection mode {one transduced
or the transmission mode (two transducers). For the
determination of ultrasonic phase velocity it is es-
sential in elither case to incorporate an appropriate
transducer correction.

An improved velocity correction for the ane
transducer case was discussed previously.! The two
transducer groblem 1s discussed only briefly in the
Titerature.**? The approximations adequate under
narrow constraints in solids, for example, are found
to be totally iradequate in liquid studies.*

In this paper we present a substantially more
accurate two transducer correction formula valid for
bath solid and 1iquid specimens. Using computer
simulations of velocity measurements, the accuracy
and range of validity of the new resuits are discussed
and are compared with previous approximations.

11. Theory

The system we treat is a one dimensional com-
posite resonator consisting of a specimen (with proper-
ties characterized by subscript s) and two identical
transducers (subscript t), We wish to find the sound
velocity vg in the specimen having measured a set of
mechanical resenance frequencies uQ of the composite
system. Using & transmission line analogy, Bolef and
Menes® treat the three-element system consisting of a

transducer, bond, and specimen. The transducer-
specimen-transducer problem can be formulated using
a similar approach.?

Provided that the ultrasonic attenuation {s

not excessive, the mechanical resonance fregquencies
vg of the composite system are the solutions of

tan o, —2(%5%)tan By - [Ei%]z tan? 8, tan a# =0 (1)

where

™y 1w2
93.——— ande:—.
S Avs t V¢
and where

r = {ogvg = opvd Slogvs + ogYy)

is the reflection coefficient from specimen to trans-
ducer. The notation employed 1s the same as in the
one transducer case.! For computer evaluation
purposes £g. (1) can be written in the equivalent form

sin(2e, + 8] - v sin{28, - 8 ) + 2r sin 6.= 0 .(2)

In the absence of transducers, the isolated
specimen resonances would be equally spaced at intervals
Ayg = vg/2lg. However, the observed reSonance spacings

Aug =rv"+1 vl of the composite system, vary with he

particu?ar mechanical resonance pair. This leads te
certain inaccuracies encountered with the so-called;

"uncorrected formula"
. (3)

For resonances not too far from the transducer reso-
nance frequency Vis an approximation? to Eq. {1) yields

- fi
v ¥ 22, auc{1+26) {4}

_ n
v. = 2£s Avc .

where & = ptft/psi§. Anticipating the results of
Section IIT1, this "1+24 formula" is found to be
adequate only for experiments with solids, where §
is typically less than ~0.02.

Using Eq. (1), we develop an improved transducer cor-
rection useful over a wider range of §. Fgquation {1)
is quite complex in comparison with the one transducer
resonance equation (Eq. {4) of Ref. 1). VUsing trigono-
metric substitutions, however, Eq. (1) is found to be
factorable into two simpler equations,

8 -

tan _Es__ [%—_H t:an_t’}t ={ (5}
8

cot ?§-+ (E&%) tan B, = 0 (6)

(These two equations are identical to the one-transdicer
resonance equation of Ref. 1 provided that £¢ is re-
placed by £5/2.) The solutions of (5) and (B) comprise
the full set of two transducer resonances, symmetric
and antisymmetric,® respectively. Taken separately,
Eqs. (5) and (6) describe alternate rescnances.

In order to develop a velocity approximation
dependent upon single spacings auz =y n

¢ T Vg W
subtract Eq. {6) written for the nth resonance from

Eq. {(5) written for the (n+ 1}th resonance. {The
approximate expression for the velocity which is
ohtained is identical to that obtained+if £q. (5) for
v@*’ is subtracted from Eq. (6) for Wi*2.) Following

a procedure similar to that used for the one transducer
case and employing the approximation. AVl = Au., we
arrive at the velocity correction formufa for %he two
transducer case,

22 a0 |12 (“95“2 ws%u, ( 2 )-1} n
v.= 28 s |12 st iprl a1 J e,
s S C Ut ﬁvc n n



where n '

Tn = Faﬁ T “c/“t )
-1

D= (Tnﬂ -T) -

Although this expression differs only slightly from Eg.

(8} of Ref. 1, the appropriate generalization is by no

means obvious a priori. In particular, the replacement

of & by 25, as might be suggested by Eq. {4}, is not

appropriate.

In Section III we compara the accuracy of this
new result with that of the 1+28 formula, the uncor-
rected formula, and an empirical approximation tech-
nique sometimes used in solid studies.

I1I. Discussion

In order to examine the behavior of the various
approximate formulas for vg, numerical iteration was
tysed to find to an accuracy of 1 part in 1010 the
- frequencies UE satisfying Eq. (2) for an assumed set
- of parameters pg, pg, Vgs Lg» £1- In these simulations,

. all arbitrary parameters were given values typical of
those encountered in ultrasonic experiments. The re-
sulting set of simulated mechanical resonance frequen-
cies was used in conjunction with the expressions for
ve to compute approximate values for the phase velocity
Tﬁe percent error for each approximation was computed
with respect to the value of vg assumed in the initial
iteration.

In general, experiments involving solid samples
faature smaller values of & than do expariments on
1iquids. Accordingly, we somewhat arbitrarily choose
to divide the range of § studied into two parts. We
call the region where § < 0.02 the "solids" region
and the regicn where § > 0.02 the "1iquids” region.
The approximations analyzed include the uncorrected
formula (Eq. {3)), the 142§ formula {€q. {4)), our
new approximation {Egq. (7)), and an additional expres--
sion which we shall call the Bolef-Menes formuta. %7
The Bolef-Menes formula involves rounding to the
nearest integer m the following expression for m':

n

Ve
m' = —"i'(]' 25} {Ba)

Av
c
The approximate expression for the velocity is
20 Wt ey
e 5 € ¢ t
Vg m [1 + 28 (-——————n {8b)
. \’c

In Figure 1 we display the percent error for
each of the varfous approximations over the range of

§ typical of experiments on solid specimens (& < 0.02).

The pair of mechanical resonances used in the calcula-
tions were the fourth and fifth on the high-frequency
side of vi. The 1+26 formuTa (Eq. (4)) is seen to
result in errors of roughly 1 part in 10% over most
of the range. In contrast, the uncorrected formula
{Eq. (3)) yields errors approximately two erders of
magnitude larger than those resulting from the 1424
formula. {The cusp-Tike behavior near & = 0.01 for
Eqs. {4) and (8) and near & = 0.004 for Eq. (7) is
due to 2 change in sign of the error.)

The Bolef-Menes oxpression {Eg. {8)) is also
presented in Figure 1. - We note that Eq. {8) is
superior to Eq. {4) over the range of 5 shown by
roughly two orders of magnitude. Equation (8) rapidly
deteriorates as § nears (.02, rendering it unusable in
the "1iquids” region.
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Figure 1. Absolute value of the percent error

in the velocity of sound v¢ versus
6 = ppdy/pgly for 6<0.02 i"so1ids"
region).

Alsc shown in Figure 1 are the results of the
present work (Eq. (7)). The improved accuracy of Eg.
(7) over the Bolef-Menes expression (Eg. (8)) may be
of value only if measurements to an accuracy of 1 part
in 107 are availabie.
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Figure 2. Absolute value of the percent error

fn vg versus § = p.€y/pt,  fOT
§ > 0.02 (“11quids$ reg?on}.
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Figure 2 shows the ervor curves in the "liquids"

regfon (6> 0.02) for Egs. (3}, (4), and (7}. (As noted
above, the Bolef-Menes formula {Eq. (8)) diverges in
this region.) As in Figure 1, the pair of resonances
used 1n the calculations were the fourth and fifth on
the high-frequency. side of vy. The 1+2§ formula (Eq.
{4)} results in large errors for § greater than 0.02.
We note in particular that the uncorrected formula
becames more accurate than the 1+2¢§ formula as §
increases. The accuracy of the present result (Eg.
(7)) 1s superior to ail previous results by roughly
a factor of 10.

The behavior of the varlous approximations
depends upon the distance in frequency between the
resaonance pair (ug, UE+3] and vy in a fashion similan
to that for the one transducer case.! Briefly, the
1426 formula is most accurate near vi, while the
errors for the uncorrected formula anrd the present
work decrease rapidly with distance from v;.

In situations where electromagnetic leakage
complicates velocity measurements,® a formula in-
volving the spacing between resonance n and n+2 may
be useful. Such a double-spacing formula is given
by Eq. (6) of Ref. 1 with & replaced by 26 and £
replaced by £./2. The error behavior for this double-
spacing formula is very similar to that for the
present result, £q. (7).
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